Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Respir Care ; 68(1): 8-17, 2023 01.
Article in English | MEDLINE | ID: covidwho-2202183

ABSTRACT

BACKGROUND: In the midst of the COVID-19 pandemic, noninvasive respiratory support (NRS) therapies such as high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) were central to respiratory care. The extent to which these treatments increase the generation and dispersion of infectious respiratory aerosols is not fully understood. The objective of this study was to characterize SARS-CoV-2 aerosol dispersion from subjects with COVID-19 undergoing NRS therapy. METHODS: Several different aerosol sampling devices were used to collect air samples in the vicinity of 31 subjects with COVID-19, most of whom were receiving NRS therapy, primarily HFNC. Aerosols were collected onto filters and analyzed for the presence of SARS-CoV-2 RNA. Additional measurements were collected in an aerosol chamber with healthy adult subjects using respiratory therapy devices under controlled and reproducible conditions. RESULTS: Fifty aerosol samples were collected from subjects receiving HFNC or NIV therapy, whereas 6 samples were collected from subjects not receiving NRS. Only 4 of the 56 aerosol samples were positive for SARS-CoV-2 RNA, and all positive samples were collected using a high air flow scavenger mask collection device placed in close proximity to the subject. The chamber measurements with healthy subjects did not show any significant increase in aerosol dispersion caused by the respiratory therapy devices compared to baseline. CONCLUSIONS: Our findings demonstrate very limited detection of SARS-CoV-2-containing aerosols in the vicinity of subjects with COVID-19 receiving NRS therapies in the clinical setting. These results, combined with controlled chamber measurements showing that HFNC and NIV device usage was not associated with increased aerosol dispersion, suggest that NRS therapies do not result in increased dispersal of aerosols in the clinical setting.


Subject(s)
COVID-19 , Noninvasive Ventilation , Adult , Humans , COVID-19/therapy , SARS-CoV-2 , Pandemics , RNA, Viral , Respiratory Aerosols and Droplets , Noninvasive Ventilation/methods , Cannula , Oxygen Inhalation Therapy/methods
2.
J Zoo Wildl Med ; 52(4): 1224-1228, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1581615

ABSTRACT

Natural infection of three captive Malayan tigers (Panthera tigris jacksoni) with SARS-CoV-2 caused mild to moderate symptoms of lethargy, anorexia, and coughing. Each tiger was longitudinally sampled opportunistically via consciously obtained oral, nasal, and/or fecal samples during and after resolution of clinical signs, until 2 wk of negative results were obtained. Persistent shedding of SARS-CoV-2 genetic material was detected via reverse transcription-polymerase chain reaction in feces up to 29 d after initial onset of clinical signs, but not in nasal or oral samples. Tigers became resistant to behavioral training to obtain nasal samples but tolerated longitudinal oral sampling. Serum was obtained from two tigers, and antibody titers revealed a robust antibody response within 9 d of onset of clinical signs, which was sustained for at least 3 mon. The tigers were infected despite the use of masks and gloves by husbandry personnel. No known cause of the outbreak was identified, despite extensive investigational efforts by the regional health department. No forward cross-species transmission was observed in primates housed in nearby enclosures. The increasing regularity of reports of SARS-CoV-2 infection in nondomestic felids warrants further investigations into shedding and immunity.


Subject(s)
COVID-19 , Felidae , Tigers , Animals , COVID-19/veterinary , Feces , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1189343

ABSTRACT

Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic disease, one of whom was confirmed positive for SARS-CoV-2. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on viral and antibody assays. To better understand this discrepancy in experimental and natural infection in ferrets, we compared SARS-CoV-2 sequences from natural and experimental mustelid infections and identified two surface glycoprotein Spike (S) mutations associated with mustelids. While we found evidence that angiotensin-converting enzyme II provides a weak host barrier, one mutation only seen in ferrets is located in the novel S1/S2 cleavage site and is computationally predicted to decrease furin cleavage efficiency. These data support the idea that host factors interacting with the novel S1/S2 cleavage site may be a barrier in ferret SARS-CoV-2 susceptibility and that domestic ferrets are at low risk of natural infection from currently circulating SARS-CoV-2. We propose two mechanistically grounded hypotheses for mustelid host adaptation of SARS-CoV-2, with possible effects that require additional investigation.


Subject(s)
COVID-19/transmission , Ferrets/virology , Host Adaptation , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Disease Susceptibility , Humans
SELECTION OF CITATIONS
SEARCH DETAIL